WINTER - 19EXAMINATION

Subject Name: Microcontroller \& Application
 Model Answer
 Subject Code:
 22426

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. 2		Attempt any THREE of the following:							12- Total Marks
	a)	Compare any three derivatives of 8051 microcontroller on the basis of RAM,ROM,Timer and Interrupts.							4M
	Ans:	Features 8051		8052	89c52	8031	8751	89v51 RD2	1M each (Any 4 Points)
		RAM	128	256	256	128	128	1k	
		ROM	$\begin{gathered} 4 \mathrm{~K} \\ \text { (mask } \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{~K} \\ (\mathrm{EPROM}) \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{~K} \\ \text { (Flash) } \end{gathered}$	0	4K (UVEPROM)	$\begin{gathered} \hline 64 \mathrm{~KB} \\ \text { (FLASH) } \\ \hline \end{gathered}$	

		then it access internal and external program memories (ROMS). ii) Pin 29- PSEN : This is an output pin. PSEN stands for "program store enable." It is active low O/P signal. It is used to enable external program memory (ROM). When [PSEN(bar)]= 0 , then external program memory becomes enabled and micro controller read content of external memory location. Therefore it is connected to (OE) of external ROM. iii) Pin 21-28: $\mathbf{A}_{\mathbf{8}}-\mathbf{A}_{\mathbf{1 5}}$: These pins are known as Port 2. It serves as I/O port. Each pin is bidirectional Input /Output with internal pull - up resistors. Besides the Input /Output, when external memory is interfaced, PORT 2 pins act as the higher-order address bus. (A8-A15)	1MPSEN 2M-Pin 21-28 1M Port 2 \& 1M A8 - A15
Q. 3		Attempt any THREE of the following:	12Total Marks
	a)	Develop Assembly Language program (ALP) to find the largest number in a block of $\mathbf{1 0}$ numbers stored at location $\mathbf{4 0 H}$ onwards in internal RAM.	4M
	Ans:	(NOTE: Marks to be given for any other correct logic used by students.) ORG 0000H MOV R1, \#0AH ; Initialize Byte Counter MOV R0, \#40H ; Initialize source pointer R0 to 40 H DEC R1 ; decrement counter by one MOV 60H, @R0 ;Read First Byte UP: INC R0 ; Increment the contents of R0 MOV A, @R0 ; Read second number CJNE A, 60H, DN ;compare the first two numbers, if not equal go to DN AJMP LARGE ;else go to LARGE DN: JC LARGE - ;check carry MOV 60H, A ;Store largest number to 60 H LARGE: DJNZ R1, UP ;decrement the counter by one, if count $\neq 0$, then go to UP END Largest No. is saved in memory 60 H . Assume any location to store the result. OR MOV R1, \#0AH MOV R0, \#40H DEC R1 MOV A, @R0 MOV B, A UP: INC R0 MOV A, @R0 CJNE A, B, DOWN AJMP NEXT DOWN: JC NEXT MOV B, A NEXT: DJNZ R1, UP INC R0 MOV A,B MOV 50H, A HERE: SJMP HERE ; initialize the counter ; initialize the memory pointer ; decrement counter by one ; load number in accumulator ; move that number to register B ; increment the memory pointer ; read the next number in A ; compare the first two numbers, if not equal go to DOWN ; else go to NEXT ; if number in A is greater then go to NEXT ; else move the number in register B ; decrement the counter by one, if count $\neq 0$, then go to UP ; increment the memory pointer ; store result at memory location 50 H (Assume any location)	4M for correc t progr am

b)	Sketch the internal memory organization in 8051.							4M
Ans:	Daigram:							4M for neat Sketc h with label
c)	Explain processes of interrupt enabling and disabling in 8051.							4M
Ans:	Interrupts are the events that temporarily suspend the main program, pass the control to the external sources and execute their task. It then passes the control to the main program where it had left off. 8051 has 5 interrupt signals, i.e. INT0, TF0, INT1, TF1, RI/TI. Each interrupt can be enabled or disabled by setting bits of the IE register and the whole interrupt system can be disabled by clearing the EA bit of the same register. IE (Interrupt Enable) Register: This register is responsible for enabling and disabling the interrupt. EA bit is set to 1 for enabling interrupts and set to 0 for disabling the interrupts. Its bit sequence and their meanings are shown in the following figure.							t 2M functi on of each

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. 4 \& \& \multicolumn{8}{|l|}{Attempt any THREE of the following :} \& \begin{tabular}{l}
12 \\
Marks
\end{tabular} \\
\hline \multirow[t]{6}{*}{} \& a) \& \multicolumn{8}{|l|}{\multirow[t]{2}{*}{Draw the format of TCON register of 8051 and describe the function of each bit of it. TCON: TIMER/COUNTER CONTROL REGISTER.BIT ADDRESSABLE}} \& 4M \\
\hline \& \multirow[t]{3}{*}{Ans:} \& \& \& \& \& \& \& \& \& \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline 2 M \\
forma \\
\(\mathbf{t}\) \\
\\
\\
2 M \\
Functi \\
on of \\
each \\
bit
\end{tabular}} \\
\hline \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \multicolumn{8}{|l|}{\begin{tabular}{l}
TF1 TCON. 7 Timer 1 overflows flag. Set by hardware when the Timer/Counter 1 Overflows. Cleared by hardware as processor vectors to the interrupt Service routine. \\
TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter1 ON/OFF. \\
TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 Overflows. Cleared by hardware as processor vectors to the service routine. TR0 TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF. \\
IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected. Cleared by hardware when interrupt is processed. \\
IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt. \\
IE0 TCON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared by hardware when interrupt is processed. IT0 TCON. 0 Interrupt 0 type control bit. Set/cleared by software to Specify falling edge/low level triggered External Interrupt
\end{tabular}} \& \\
\hline \& b) \& \multicolumn{8}{|l|}{Describe serial communication in 8051. Explain the use of SCON register.} \& 41 \\
\hline \& Ans: \& \multicolumn{8}{|l|}{\begin{tabular}{l}
8051 micro controller communicate with another peripheral device through RXD and TXD pin of port3.controller have four mode of serial communication. \\
1. Serial Data Mode-0 (Baud Rate Fixed) \\
In this mode, the serial port works líke a shift register and the data transmission works synchronously with a clock frequency of fosc /12. Serial data is received and transmitted through RXD. 8 bits are transmitted/ received at a time. Pin TXD outputs the shift clock pulses of frequency fosc \(/ 12\), which is connected to the external circuitry for synchronization. The shift frequency or baud rate is always \(1 / 12\) of the oscillator frequency. \\
2. Serial Data Mode-1 (standard UART mode)(baud rate is variable) \\
In mode-1, the serial port functions as a standard Universal Asynchronous Receiver Transmitter (UART) mode. 10 bits are transmitted through TXD or received through RXD. The 10 bits consist of one start bit (which is usually ' 0 '), 8 data bits (LSB is sent first/received first), and a stop bit (which is usually ' 1 '). Once received, the stop bit goes into RB8 in the special function register SCON. The baud rate is variable \\
3. Serial Data Mode-2 Multiprocessor (baud rate is fixed) \\
In this mode 11 bits are transmitted through TXD or received through RXD. The various bits are as follows: a start bit (usually '0'), 8 data bits (LSB first), a programmable 9 th (TB8 or RB8)bit and a stop bit (usually ' 1 '). While transmitting, the 9 th data bit (TB8 in SCON) can be assigned the value ' 0 ' or ' 1 '. For example, if the information of parity is to be transmitted, the parity bit (P) in PSW could be moved into TB8.On reception of the data, the 9 th bit goes into RB8 in 'SCON',
\end{tabular}} \& 2M
mode
descri
ption
in
short

$(1 / 2$
mark
for
each
mode)

\hline
\end{tabular}

 tified)

RS: RS is the register select pin. We need to set it to 1 , if we are sending some data to be displayed on LCD. And we will set it to 0 if we are sending some command instructions during the initializing sequence like clear the screen etc.
$\mathbf{E N}$: The enable pin is used by the LCD to latch information presented to its data pins. When data is supplied to the data pins, a high-to-low pulse must be applied to this pin in order for the LCD to latch in the data present at the data pins. This pulse must be a minimum of $\mathbf{4 5 0 n s}$ wide.
d) Explain the use of following assembler directives.
(i) EQU
(ii) ORG

Ans:
(i) EQU: Equate

It is used to define constant without occupying a memory location.
Syntax: Label EQU Numeric value
By means of this directive, a numeric value is replaced by a symbol.
For e.g. MAXIMUM EQU 99 After this directive every appearance of the label MAXIMUM in the program, the assembler will interpret as number 99
(MAXIMUM=99).

(ii) ORG:-ORG stands for Origin

Syntax: ORG Address

The ORG directive is used to indicate the beginning of the address. The origin directive tells the assembler where to load instructions and data into memory. It changes the program counter to the value specified by the expression in the operand field. The number thatcomes after ORG can be either in hex or in decimal. If the number is notfollowed by H , it is decimal and the assembler will convert it to hex. tified)

	column bits has a zero, this means that a key press has occurred. For example, if D3-D0 this means that a key in the D1 column has been pressed. After a key press is detected, the microcontroller will go through the process of identifying the key. Starting with the top row, the microcontroller grounds it by providing a low to row D0 only; then it reads the columns. If the data read is all 1s, no key in that row is activated and the process is moved to the next row. It grounds the next row, reads the columns, and checks for any zero. This process continues until the row is identified. After identification of the row in which the key has been pressed, the next task is to find out which column the pressed key belongs to.

(b)

Differentiate between

(i) Harvard and Von-neuman architecture
(ii) Microprocessor and Microcontroller

Ans:

i) Harvard Architecture and Von-neuman architecture

Sr.No	Von Neumann architecture	Harvard architecture
1		
2	The Van Neumann architecture uses single memory for their instructions and data.	The Harvard architecture uses physically separate memories for their instructions and data.
3	Requires single bus for instructions and data	Requires separate \& dedicated buses for memories for instructions and data.
4	Its design is simpler	Its design is complicated
5	Instructions and data have to be fetched in sequential order limiting the operation bandwidth.	Instructions and data can be fetched simultaneously as there is separate buses for instruction and data which increasing operation bandwidth.
6	Program segments \& memory blocks for data \& stacks have separate sets of addresses.	Vectors \& pointers, variables program segments \& memory blocks for data \& stacks have different addresses in the program.

ii) Microprocessor and Microcontroller

		3M
(b)	Describe with sketches the procedure to troubleshoot the traffic light controller.	6M
Ans:	Considerations of Traffic Signal 1) Traffic light may have sensors integrated to provide real time traffic information 2) Based on the traffic information provided by the sensor, the duration of the green $/$ Red LED light for each direction may vary so that the traffic for both the directions are roughly balanced. Time left for the green light should be displayed 3) When the traffic light for one signal is green, then the traffic for the other directions should be red (with duration displayed in red) 4) The red light will be switched to yellow when the timer value is 5 sec before switching to red. 5) Violations happen when user expectancy is not met. A user like pedestrian does not expect to stand for more than a minute or two at a signal, when this user expectancy is not met, the pedestrian tries to venture out and violate the signal 6) The smooth movement of conflicting vehicles is determined by the availability of gaps in traffic. This is true for both pedestrians and vehicular traffic. Understanding of gaps is important for justifying the type of traffic control device, including a traffic signal. Points to consider for determining signal timings 1) The signal operational parameters are reviewed and updated (if needed) on a regular basis to maximize the ability of the traffic control signal to satisfy current traffic demands	$\begin{array}{\|l} \hline \text { Any } \\ \text { other } \\ \text { correc } \\ \text { t } \\ \text { troubl } \\ \text { e } \\ \text { shooti } \\ \text { ng } \\ \text { proce } \\ \text { dure } \\ \text { may } \\ \text { be } \\ \text { given } \\ \text { marks } \end{array}$

tified)

	2) Geometry of the intersection is the next step in the signal timing process. Determining the lane use (which traffic mode), dedicated vs. shared lane, type of roads interacting (arterial with arterial etc.), type of road infrastructure (ramps, one way streets, etc.) will impact the timing. 3) Basic signal timing parameters comes next. Pedestrian walk times, flashing don't walk, yellow time, all red clearance interval, detector gap times all need to calculated or established. 4) Identify bottlenecks, review conditions, conduct warrant analysis and use engineering judgment in determining traffic signal installation 5) Determine AM and PM peak hour traffic volumes 6) Condition diagram which includes roadway geometrics, parking, driveways, sidewalks, signing, pavement markings, development of intersection quadrants, and any other features pertinent to the study peak hour delay study 7) A conflict analysis 8) Capacity analysis of the intersection for current and future years using growth	
(c)	Draw and explain Internal port structure of Port 0 and Port 1 of 8051 microcontroller.	6M

tified)

Ans:	Port-0 can be configured as a normal bidirectional I/O port or it can be used for address/data interfacing for accessing external memory. When control is '1', the port is used for address/data interfacing. When the control is '0', the port can be used as anormal bidirectional I/O port.
Let us assume that control is '0'. When the port is used, as an input port, '1' is written to the latch. In this situation both the output MOSFETs are 'off'. Hence the output pin floats. This high impedance pin can be pulled up or low by an external'source. When the port is used as an output port, a '1' written to the latch again turns 'off' both the output MOSFETs and causes the output pin to float. An external pull-up is required to output a '1'. But when '0' is written to the latch, the pin is pulled down by the lower MOSFET. Hence the output becomes zero. When the control is '1', address/data bus controls the output driver MOSFETs. If the address/data bus (internal) is '0', the upper MOSFET is 'off' and the lower MOSFET is 'on'. The output becomes '0'. If the address/data bus is ' 1 ', the upper transistor is 'on' and the lower transistor is 'off'. Hence the output is '1'. Hence for normal address/data interfacing (for external memory access) no pull-up resistors are required. Port-0 latch is written to with 1's when used for external memory access.	

